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Absolute Three-flat Test in Vertical Direction with Gravity
Deformation Compensation
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(Engineering Research Center of Extreme Precision Optics, State Key Laboratory of Applied Optics, Changchun
Institute o f Optics, Fine Mechanics and Physics, Chinese Academy of Science, Changchun 130033, China)
Abstract: In order to get lower uncertainty, a method was proposed to compensate the gravity
deformation caused by flipping in vertical absolute three-flat test. The gravity deformation of the flat
surface was simulated by finite-element software and added to the three-flat test calculation. The
calibrated results were compared with shift-rotation absolute testing method, and the root mean square of
the surface map difference was less than 1nm without power term. For power term verification, a flat
supported on different rings was tested and subtracted. For power term verification, a flat supported on
different rings is tested and the difference between the tests and the simulation was less than 9 nm peak to
vally, which was usually sufficient for flat power term testing. This experiment also proves the accuracy
of the power simulation indirectly, the improved three-flat test can be applied in high precise flat absolute

calibration including the power term in vertical direction.
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0 Introduction

Absolute calibration of the reference surface is a
key procedure to achieve high precise results using

Fizeau interferometer. Absolute three-flat test is the

primary method to calibrate the transmission flat and
has been widely studied” ™. The basic three-flat test
calibrates only the profile of several distinct lines, and
the expansion of it gets the entire surface map with the

additional rotation or translation testt™™. It is

Foundation item: National Science and Technology Major Project of China (No. 2009Z2X02205)
First author: SU Dong-qi(1985—), male, assistant professor, Ph. D. candidate, mainly focuses on optical testing study. Email:doqu@

hotmail. com

Supervisor(Contact author) : YANG Huai-jiang(1966—), male, professor, Ph. D. degree,

and testing. Email: yanghj@ sklao. ac. cn
Received: Jun. 17, 2015; Accepted: Sep. 6, 2015

mainly focuses High-precision optical processing

http : /) www . photon . ac . cn

1112003-1



T

¥R

relatively easy to calibrate the Rotationally Varying
(RV) part of a surface by rotation method and the
difficulty is to calibrate the Rotationally Invariant (RI)
part of the reference flat. The translation method can
be used to calibrate the RI term except the power

L7 Power term is really difficult to calibrate

term
using the translation method because of the introduced
tilt during the translation, which is derivative of the
power term. In addition, the normal three-flat test is
also hard to get high accuracy result in the vertical
direction due to the gravity deformation change caused
by flipping which is a necessary procedure.

To get correct RI term of reference surface,
especially the power term in vertical interferometer, we
improved the three-flat test by adding the gravity
deformation compensation, which is essential to get
high accuracy in vertical three-flat test, and made
verification. L. A. Selke did a theoretical analysis of
the deformation of a flat on a ring support®. The

the

and

used widely to get
Burke ]

Maurizio Vannoni also did a flat calibration in vertical
[11, 13]

finite-element method is

[19-22]

deformation of optical surface

direction, but no verification of the analysis In
this paper, the surface shape change caused by gravity
is simulated by finite-element software and added to the
three-flat calculation. The error of the finite-element
simulation is calibrated and verified. The Root Mean
Square ( RMS) of the difference map between this
method and shift-rotation absolute testing method

without Power term is less than 1 nm.

1 Three-flat test with
deformation compensation
Three-flat

compensation is an improving of the ordinary three-flat
Here the three-flat

gravity

absolute test method with gravity

test in the vertical direction.
method based on Evans’ N position rotation method is
firstly simply described™. Through the rotation of a
piece of flat at N angles the RV part and the RI part of
a surface are separated, except the AN theta item,
where & is a positive integer. As a normal three-flat
test procedure, the three flat surfaces A, B and C are
measured with each other, and C is the surface to be
rotated and flipped. To describe the calculation, we
use A, B and C as the surface map deviation and the
combination of them as the summation, which means to
test with each other. So the surface figure of the three
flat can be calculated by Eqgs. (1)~ (3)
BC‘FBA_CAiCRV_ /{?h\lj

B= 2 2
A=BA—B (D
C=CA—A

Coy A~ BC— BCX, = Cry — Cony (2

CRy =[Crv ™ 3
where Cgy is the asymmetric part of C surface, Ciy is
the asymmetric part of the C surface flipped physically,
and [ Cry /"™ expressed the flipped data of Cyydata. That

means Cpy and Chp

can be converted to each other in
ordinary condition as Eq. (3). But gravity deformation
will introduce to the surface when it is flipped in the
vertical direction. Then the first line of Eq. (1) will
become to Eq. (4) with simple tansform, where
Cricdownup 18 the RI term change when flipped upside
down. And the Cy, and C¥ cannot be transformed to
each other simply, because the deformation is not the
same in different orientation. So the Cyy and Ci¥ should

be both calibrated by

BC+ BzA —CA —BL CRV ; Cﬁl\p + CRm\onr up)

We proposed a three-flat testing procedure in

4

vertical direction with deformation compensation. The

three-flat test procedure with deformation
compensation is shown in Fig. 1. The procedure is the
same with normal three-flat test except the calculation,
and it is in vertical direction. The surface C is on the
upper side in step one, and lower side in step two and
three, the surface B stands for the reference surface of
the transmission flat of the vertical interferometer,

which result is the our goal.

|G| (G| [T R
1 v 1 1 £
Step 1 Step 2 Step 3 Step 4
Fig.1 The three-flat testing procedure

Because the surface C is supposed to be flipped
upside down, the deformation will be different in both
RV and RI term. And we just focus on the RI term
simulation here, because the RV term can be calibrated

precisely by rotation method in step 3. So in this three-

flat testing procedure, the RI term of support
deformation of surface C and the surface figure of it in
weightless condition is considered separately. The
results of testing procedure shown in Fig. 1 are
expressed in Egs. (5)~(8)
CA=C"+A+S, (5
BC=B+C+S, (6)
BC, ...= B+ Cy+ S 7
BA=B+A (8

where C* means the flip of C that stands for the surface

figure in weightless condition. S, is the support

deformation of surface C relative to weightless

condition when it is testing on upper side as in step 1;
S, is the support deformation of surface C when it is
testing on lower side as in step 2 to 3; the subscript ‘sc

2

_ave’ means the average of several BC results, which

are obtained by rotating surface C and the support
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structure together relative to surface B at equal space
rotation angles in a circle; and the subscript RI
represents the RI term.

It can be seen from the procedure that the RV
component is easy to obtain by the rotation method.
And the result is shown in Egs. (9) to (11)

SCdy=BC—BC. .. (9
Bry = (BC) gy —SCdgy (10)
Agy= (BA) gy — Byy (1D

where the parenthesis and the subscript RV mean
getting the RV term of the data by rotating the data
itself. SCdgy means the RV term of the sum of surface
C and support deformation when it is tested on the
lower side as in step 2~3.

Actually, the surface shape of the Transmission
Flat ( TF)

interferometer is the result we want to get. So the

surface B which is installed on the

problem is how to get the RI term of surface B. The
Eq. (4) is used and transformed to Eq. (12)
BC+BA—CA Cuow—Ci  S,—S,

B= 5 5 2 (12)
The RI term is only to be cared about here. So
_ (BC+BA—CA\ _ Sixi— S
Bu= () P (13)

the last term in Eq. (13) is simulated by finite-element
software to get the RI term of surface B. Finally the
surface of transmission flat B is got by adding RV term
and RI term of it obtained by Eqgs. (10) and (13).

B= By 1+ By (14)

Finite-element simulation should be implemented
in two situations. One is that the part is supported in
orientation of used surface up, and another is that the
part is supported upside down with the same structure.
An ideal ring is used as the model of the lens
mounting. The model is symmetrical and relatively
easy to analyze. Hexahedral finite-element mesh is
used for the main body simulation with fix constraint
boundary conditions on the ring, and contact is applied
between the ring and the lens. The model is illustrated

in Fig. 2.

Fig. 2 The part of finite-element model for simulation

2 Experiment

An experiment is performed using 300 mm vertical
wavelength shifting interferometer and 300 mm flats.

In this experiment, flat B is a TF which is installed on

the vertical interferometer and it is the surface to
calibrate. Flat A is a Return Flat(RF) which has its
individual stable support structure. Flat C is also used
as a TF. The vertical wavelength shifting Fizeau
interferometer is used for this experiment, so flat C
needn’t to be installed to the vertical interferometer as
the normal TF flat B. Flat C is put on a ring structure,
which is going to be simulated in finite-element
software to get the deformation, mainly the RI term.
And in step 1, the structure for supporting C is put on
several poles which are mounted on the platform of the
vertical interferometer, so that the lower surface A is
not influenced by the structure. The same structure
can be used in step 2 to 3 by flipping the surface C and
simply covering the RF surface A.

The RI term of the surface deformation simulated
by finite-element software when it is on the lower side

as in step 2 is shown in Fig. 3.

Size X 241.8 mm
PV 30.049nm
RMS 8.565nm

Power  29.672nm

Fig. 3 The RI term of the surface deformation simulated
by finite-element software when it is in lower side
as in step 2
The simulated RI term of the surface deformation
when it is on the upper side as in step 1 is shown in
Fig. 4.

Size X' 241.8 mm
PV 29.711nm
RMS 8.592nm

Power 29.769nm

Fig.4 The RI term of the surface deformation simulated
by finite-element software when it is in upper
side as in step 1
The RV term of reference surface B is obtained by
the rotation method according to Eq. (10); the RI term
is get using Eq. (13) based on the three-flat test with
simulated RI deformation change. The S is
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Size X 241.8 mm
PV 32.019nm
RMS 3.199nm
Power 8.640nm

Fig.5 The surface map of B got by the improved three-flat
test with Power term

shown in Fig. 3 and S, is shown in Fig. 4. The RI

term form normal three-flat test is calculated by

mathematical method, which involves rotating the data

mathematically to find the RI term of one data. Finally

the whole surface map of surface B is get and shown in
Fig. 5 by adding RV and RI term.

To verify the result further, the shift-rotation
method is utilized to calibrate the reference surface of
the transmission flat, which can reach a high accuracy
with a short cavity and can be used as a reference. But
the power term of the flat cannot be calibrate by shift-
rotation method because of the tilt when shifting. The
calibration result of the same transmission flat is shown
in Fig. 6, and also the pixel by pixel difference with the
three-flat method without power term. The RMS of
the difference map is 0. 7 nm, which verifies partially
the accuracy of the three-flat calibration based on
gravity deformation compensation less than Inm. And
if Zernike 36 terms are fitted to the difference map,

0.4 nm can be reached shown in Fig. 7.

e
.9 3

Size X 241.8 mm PV 29.460nm Size X 241.8 mm PV 34.008nm Size X 2412mm PV 39.540nm
RMS  2.008nm Power 8.640nm RMS 1.955nm  Power  -0.000nm RMS 0.796nm  Power  0.687nm
Fig. 6 Comparisons of three-flat and shift-rotation (removing the power term)

of the improved three-flat test and shift rotation test

except power term. It proved the accuracy of

simulation to a certain extent, but it is still not very
Size X 2412 mm convincing because of the power term. In order to
PV 2.694nm confirm the result of power, we did another experiment
RMS 0.354nm to verify the simulation. This experiment compares the
Power 8.689nm

)

Fig. 7 The 36 Zernike term fit result of the difference of
three-flat and shift-rotation

3 Power confirmation

An important application of this improved three-
flat test is calibrating the power term of transmission
flat, which is difficult by other method. As we can
see, the key problem of the method is the accuracy of

simulation. And we verified the result by the difference

test result of power term of a flat surface in the two
situations. One is the case that the 285 mm aperture
flat is measured supporting by a bigger ring of 270 mm
diameter at the edge bottom, another is by a smaller

The

measurement result is showed in Fig. 8, where the

ring of 170 mm diameter. difference of
power value is 42 nm. The two situations are also

the RI

difference is illustrated in Fig. 9, where the power term

simulated by finite-element software and

is 51 nm. So the simulation error of power is about 9
which

tolerance. This confirmation experiment shows to some

nm, is generally sufficient for the power

extent the accuracy of the power calibration.
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Size X 241.8 mm
PV 76.396nm
RMS 33.374nm
Power 42.228nm

| —

Fig. 8 The difference of test results of one flat supported

by two different size of ring. one big and one small

Size X 241.8 mm
PV 50.702nm
RMS 14.645nm
Power  0.771nm

Fig. 9 The difference of simulation results of one flat
supported by two different size of ring, one big

and one small

4 Conclusion

The method of three-flat testing with gravity
compensation solved the problem of flat calibration in
vertical direction. The deformation caused by gravity is
simulated by finite-element analysis and added to the
calculation. The result is verified by comparison with
shift-rotation calibration method without power term
and another experiment for the power term
verification. So it is believable that the method of
three-flat test with gravity compensation achieves high
precision and is useful to calibrate the power term of a
vertical TF which is difficult to calibrate by other
method.
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